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A note on the super AKNS equations 
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International Centre for Theoretical Physics, Miramore, Trieste, Italy 

Received 8 September 1987, in final form 23 November 1987 

Abstract. We find some relationships between the usual AKNS scheme with the super one, 
when its elements take values from the Grassmann algebra on a two-dimensional vector 
space. The solutions of these super AKNS equations are discussed. 

In [l], a hierarchy of super AKNS equations and its Lax pair is given in the case of 
polynomials in 6 to third order. The super AKNS equations are (replacing P by - P )  

3 a, = do[%, - 3qmx - s q x r a  - h a  + iqxx + % x P x I  

P,  = do[Pxxx - W P x  - i W P  - h P  +hxx + h % l  
+ d , ( - c x x x + f a q r - q ~ , - ~ ~ q x ) + d 2 d , - d 3 a  (3) 

+ di(Pxx -$qr+ rax + f a r x )  + d2Px + d3P (4) 

3 

where q, r are even elements; P ( q )  = P ( r )  = 0, a, /3 are odd elements; P ( a )  = P ( P )  = 1. 
q, r, a, p are functions of x, t and d o ,  d , ,  d 2  and d ,  are functions of t. 

If q, r, a, p are given values from the Grassmann algebra [ 2 ]  on a two-dimensional 
vector space V = { e , ,  e2} 

4 = 41 + q2e, /l e2 r = r ,  + r2el A e2 

a = a l e l  + a2e2 P=P1e,+Pze*  

where q , ,  q 2 ,  r , ,  r 2 ,  a , ,  a 2 ,  P I ,  p 2  are some usual unknown functions, then (1)-(4) 
reduce to the following equations: 
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3 3 3 P ~ ,   do(^,,,, - j q l r l P t y  -4q lrrIPI  - h r I y P ,  --irIyxal - ~ ~ ~ a ~ ~ )  

+ ~ l ( P l x x - f 4 1 r l P ! y  - r l ~ , y - f r l x a ! )  

+ d2Pn + d3Pl r = l , 2  (9) 

+ d1[-f4zxx +2r,q142+ r24: -2%(QY,P2 - %PI) 
+ 2(a1 azx - ( ~ 2 ~ 1  y 11 + d24zx - 2d3q2 

+ dl[frzxr - 241 rl rz - r:qz - 2rl(alP* - a2P1) 

+ 2 ( P I PZX - PzP I Y ) 1 + dz rz Y 2d3 rz . 

3 
42f = do[tqzxxx - Z ( q i  rz+ 42r1 )41* -;qi r142, + 341( P z x  - a2P1 r )  + 3qI(Pl a z x  - P z a l x  )I 

(10) 
3 3 rZf = do[fr2,,, - d q l  r2 + q*r l )r lx  - i q l r l  rZI; - 3rl(a1Pzx - a2P1 y )  - 3rI(Pla2 ,  - P2alx)l 

(11 )  
We have eight equations here but ( a I ,  a 2 )  and/or ( P I ,  P 2 )  satisfy the same equations, 
respectively. Note that (6)  and ( 7 )  for ql, rl are nothing but the usual AKNS equation 
associated with the Lax pair [3-51 (linearised equations): 

Q l X  = -5Ql + 4 l Q 2  Q 2 x  = r1'P1+ 5 Q 2  (12) 

Q l f  = AQI + BQz Q2r = CQI -AV2 (13) 
where 

A = dO[$(ql r l x  - r l q l x )  + i q l r l 5 -  5'1 + d l ( $ q l  rl  - t2) - d 2 5 -  d3 

B = ~ o ~ ~ ~ q l x x - t q : ~ l - f q l x 5 + 4 1 5 2 ~ 1 + ~ l ~ - f 4 1 , + 4 1 5 ~ + ~ 2 4 1  (14) 
C = do($, xx - f q l  r: + i r l x 5  + r 1 t 2 )  + d , ( f r , ,  + r15) + d2r1. 

When we find a solution for ( q l ,  r l )  of ( 6 )  and ( 7 )  and substitute it into (8) and (9) ,  
then (8) and (9) are linear equations for (al, PI). 

Using (12) and eliminating the parameter 5 in (13 ) ,  then (13 )  can be written in the 
alternative form 

3 3 3 
Q l f  =AQcl+BSoz= do(Q1xxx -;41~1Qlr-s41x~1QI - ~ 4 1 r l x Q 1 - a 4 l x x ( P 2 - S q l x Q 2 * )  

+ di (-vi rill+ 441 ri 'PI  + 41 (OZX + 4 4 1 x ~ 2 )  + di 'P IX - d3qi (15) 

+ d l ( ~ 2 ~ x - f 4 1 r 1 ' P ~ - ~ r l x ~ 1  - r l ~ l x ) + d 2 ( P 2 x + d 3 ~ 2 *  (16) 

3 3 3 3 
Q2r = CQi -AQ2= do(Qz,,~-;qiriQzx-a41rixQz-,41xrQz-ari,,Qi - Z ~ I X ( P I X )  

It is amusing that (8) and (9) for (aI,PI) coincide with (15 )  and (16) for ( q l ,  q2) .  It 
can be concluded that the solutions of (8) and (9) are nothing but the eigenfunctions 
of the usual Lax pairs (12) and (13) .  

When a I  = c a 2 ,  P I  = cP2 ( c  is an arbitrary constant), (10) and ( 1  1) for q 2 ,  r2 reduce 
to a coupled linear homogeneous equation: 

3 3 
4 2 1  = d0(t42xxx -d41  r2 + 42r1)41, - 2q1r1q2x) 

~2~ = d0[tr2xxx - ~ ( 4 1 ~ 2 + 4 2 ~ 1 ) r 1 . - i 4 1 ~ , r 2 x I  

The coupled equation (17) is nothing but the temporal evolution equation of the 
linearised equation for the usual A K N S  equations (6) and (7) .  We can conclude that 
the solutions of (17) for ( q 2 ,  r2) are the symmetries of the usual AKNS equation [6]. 

+ d1(-4q2xx +2r iq i  4 2  + r24:) + d242, - 2d342 
3 

+ 4 ( f r 2 , ,  -2q1r1r,-r:q,)+d~r, ,+2d,r , .  (17) 
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By means of cumbersome but straightforward calculations, we have proved that 
the squared eigenfunctions (cp:, cp:) of the Lax pair (12) and (13) are the solutions of 
(17) for q 2 ,  r 2 .  In the general case, a I  # ca2 or PI # c p 2 ,  we can use the completeness 
of the square generalised eigenfunctions of the AKNS system [7] to give the solution 
for ( q 2 ,  r2 )  of the coupled inhomogeneous equations (10) and (1 1). We shall publish 
this elsewhere. 

As an example, we take d ,  = d2 = d3 = 0, do = 4, /3 = 0 and r = -1. (1)-(4) reduce 
to the super K d v  equation 

(6)-(11) reduce to 

41r=41xxx+64141x (19) 

a,, =4a,x,x+f41arx+341xffl i = l , 2  (20) 

4 2 1  = 42xxx  +641q2.~ +6q241 r - 12(ff I f f 2 x x  - f f z f f  I Y X ) .  (21) 

Similar equations have been deduced in [SI. Equation (19) is the famous K d v  equation, 
its Lax pair is as follows: 

cp2xy='(52-41)cp2 ~ 2 r  = 4~zxxr +6qlcpx + 3qlxcp,. (22) 
It is well known that the one-soliton solution of the K d v  equation (19) is 

q1 = 2 k 2  sech2(kx+4k't). 

The eigenfunction of the Lax pair is 

cp = ( C l c p ,  + C2cpZ) (23) 
where c , ,  c2 are arbitrary constants, and cpl , cp2  are as follows: 

cpl = [5 -k tanh(kx+4k3 t ) ]  e x p ( 5 ~ + 4 5 ~ t )  

cp2  = [ 5 + k tanh( kx + 4k3t) exp( -6x - 4 t 3  t ) .  

Solution (23) does not belong to L'(-co, CO). If we want cp to tend to zero quickly, 
when 1x1 +CO, we take 5 + k and then 

lim cpl = lim f -  k cp2  = k sech( kx + 4k3t).  (25) 
5- k 

We obtain the soliton-like solution as follows: 

a, = k sech( kx + 4k3t) i =  1,2.  (26) 
In this case, (21) reduces to the linearised form of the K d v  equation. 

There are two sets of symmetries [9, 101: the K symmetry, 

when q 1  is one-soliton solution, and K ,  is linear dependent with 

4 2 = q I x  = -4k3 sech2(kx+4k3t) tanh(kx+4k3t)  

and the 7 symmetry, 

7, = C$nTO 70 = 3 f9lx + i. 
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Only two symmetries 

7 0  = 3 191, + f 71 = 3 tq1, + xq,, + 2q, 

are local, but T, does not tend to zero as / x / + a .  We obtain one local solition-like 
solution 

4 2 =  =4k2sech2(kx+4k3t)[l  -(4xk+ 12rk3) tanh(kx+4k3t)]. (29) 

To conclude we list some problems: how do we prove the above results for all 
super AKNS hierarchies; do the same results appear in another integrable super system; 
and when we take values from the Grassmann algebra on the n-dimensional vector 
space, what will happen? 
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